
IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol.2, No. 4, August 2012

 727

An Algorithm for Min Cut Partitioning for Digital

Circuit Layout based on Evolutionary Approach

Maninder Kaur

School of Mathematics and Computer Application,

Thapar University, Patiala, INDIA

 Email: manindersohal@thapar.edu

Kawaljeet Singh

Director, University Computer Centre, Punjabi University

Patiala, INDIA

Email:singhkawaljeet@rediffmail.com

Abstract—The paper presents a new algorithm for circuit

partitioning that exploits some of the latest innovations of

evolutionary approaches. The proposed algorithm based on

swarm intelligence technique hybrids discrete version of artificial

bee colony algorithm with Inver over operator along with

simulated annealing technique for local improvement of solution.

The algorithm is tested on small UCLA instances and the

proposed algorithm outperforms in terms of average runtime for

average net cut in comparison to UCLA branch and bound

partition.

Keywords- Artificial Bee Colony algorithm, Simulated

Annealing, Inver-over operator

I. INTRODUCTION

In the combinatorial sense, the digital circuit layout
problem is a constrained optimization problem. Practically, all
aspects of the layout problem as a whole are intractable [11,
12].Many heuristic methods are incorporated to solve very
large problems. One of these methods is to divide a circuit
hierarchically into parts with divide and conquer technique
.This paper focuses on the problem of min- cut weighted circuit
bipartition .Other than being the first phase in physical digital
circuit design; circuit partitioning is of important use in
placement, floor planning, and other layout problems.

Nature is inspiring researchers to develop models for
solving their problems. The Circuit Partitioning problem being
a classic NP-hard problem, various evolutionary approaches
like genetic algorithm [2,14,15], ant colony system [1] ,
memetic algorithm[16] ,simulated evolution algorithm[10]
honey bee algorithm[7] and particle swarm optimization[9]
have been proposed to solve the circuit partitioning based on
graph partitioning technique ,which are used to provide
solutions of high quality but not necessarily optimal. This paper
presents a new hybrid algorithm, which is based on the
concepts of the artificial bee colony (ABC) with Inver-Over
operator for neighborhood search and local improvement
strategy using simulated annealing technique.

II. PROBLEM FORMULATION

A circuit is represented as a netlist hypergraph H(V,E)
where V={v1,v2…….vn} is set of vertices or modules and E is
set of edges/ nets which is a subset of V. Let A (v) denote the

total area of v ∈ V and let A(S)= denote the area of a

subset S V .

The cut of a bipartition, Cut (p) is the number of nets which
contain modules in both X and Y i.e

Cut(P) = |{e|e∩ X≠ , e∩Y≠ }|. (1)

An optimal min cut area-balanced/vertex weighted
bipartition P={X, Y} is a pair of disjoint sets X and Y such that
X U Y=V with minimum cut (P) subject to the constraint

A(V)(1-r)/2≤A(X),A(Y) ≤A(V)(1+r)/2 with r as user
defined tolerance factor.

III. THE PROPOSED ALGORITHM

In this work The HABCSACP (Hybrid Artificial Bee
Colony Optimization with Simulated Annealing for Circuit
Partitioning) is proposed .This hybrid algorithm uses Artificial
Bee Colony algorithm[3,5] which has good exploration and
exploitation capabilities in searching optimal solution with
Inver-over operator[13] for neighbor search and simulated
annealing for local improvement of solution

In the algorithm a group of bees is created during initial
stage. The count of number of Employed bees (Nemployed) and
Onlooker bees (Nonlooker) , both is set equal to the population
size.

Initialize pop_size - Number of solutions in the population

maxCycle - Total no. of iterations

limit - Total number of trials after which the solution is

rejected,

lchrom - Total number of modules/vertices of circuit i.e.

length of solution

Pseudo code of the Proposed Algorithm

Intialise the parameters :pop_size, maxcycle, limit, lchrom

 Set Nemployed =Nonlooker= pop_size

Set limit, maxcycle

Initialize (pop_size,lchrom);

for iter=1:maxcycle

Sendemployedbees(pop_size,lchrom);

Calculateprobabilites(pop_size);

Sendonlooker(pop_size,lchrom);

[Globalparam,globalmin]=Memorizebestsource(pop_size);

Local_improve_SA(Globalparam,globalmin);

SendScoutBees(pop_size,limit,lchrom);

End

Write : Globalparam, Globalmin //resultant solution

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol.2, No. 4, August 2012

 728

End.

Step 1: Initialize (pop_size,lchrom) : Randomly generate an
initial population P of size pop_size with set of feasible
solutions(i.e. balanced partition w.r.t weight of vertices) .Read
the input files and convert it into netlist format. Calculate the
fitness value of each solution in the population using the net cut
evaluation mechanism.

For a net cut evaluation a multiword mask of size of the
chromosome is pre computed for each net .If a cell is connected
to net, the corresponding bit position is set

M i j = (2)

Where Cj is the j
th
 cell in order

Mij = mask for net Ni and is the jth bit position of Mi.

The value of CM i and ĈM i is evaluated. If both values are
nonzero i.e. net is present in both partitions, hence a cut.
Otherwise no cut

Step 2: Repeat the following steps for specified number of
iterations i.e. maxcycle

Step 2.1: Sendemployedbees(pop_size,lchrom) : For each

solution in the population produce a modification on the one

existing. If the fitness value of new solution is higher than that

of the previous one then memorizes the new solution and forget

the old one. Otherwise keep the position the previous one

For each solution Si for i ∈ [1: Nemployed]

SNi =Inver-over operator (Si) //Generate neighbourhood

solution SNi

Calculate the fitness value of SNi .

If fitness(SNi)>fitness(Si)

Si=SNi

Si.trial=0

Else

Si.trial= Si.trial+1

End of if statement

End of for statement

Every employed bee in the population chooses a

neighborhood solution. The neighborhood solution is generated
by Inver-over operator [] which has a strong selective pressure
with an adaptive operator. The features of this adaptive
operator are the number of inversions applied to a single
individual and the segment to be inverted is determined by
another (randomly selected) individual.

The probability p of generating random inversion, and the
number of iterations in the termination condition

Pseudocode of Inver-over operator

Sol= Si

select (randomly) a vertex v from Sol

While (1)

 if (rand() ≤p) then select the vertex v0 from the remaining

vertices in Sol

 else select (randomly) an individual from P, assign to v0 the

'next' vertex to the vertex v

 in the selected individual

 end of if statement

 if (the next vertex or the previous vertex of vertex v in Sol is v0)

 then exit from loop

end of if statement

 inverse the section from the next vertex of vertex v to the city v0 in

Sol

 v = v0

if (fitness(Sol) ≤ fitness(Si)) then Si = Sol

End of while

Step 2.2 Calculateprobabilites(pop_size); The probability
value is calculated for each solution is calculated using the
following formula

Si.p = (3)

where pop_size -is the population size and

fi is the fitness value of i
th
 solution

Step 2.3 SendOnlookerbees(pop_size,lchrom): At the third
stage, an onlooker prefers a solution depending on the
probability value of the solution.

For each solution Si for i ∈ [1: Nemployed]

If(Rand() < Si.p)

then

SNi =Inverover operator (Si) //Generate neighbourhood

solution SNi.

Calculate the fitness value of SNi .

If fitness(SNi)>fitness(Si)

Si=SNi

Si.trial=0

Else

Si.trial= Si.trial+1

End of if statement
End of for statement

Step 2.4 Local_improve_SA(Globalparam,globalmin)
Simulated annealing being a simulated annealing algorithm
proposed by Kirkpatrick et al. [8] is incorporated into the
algorithm where the resultant solution is further improved by
finding nearby solutions. The simulated annealing algorithm
gives optimal results for circuit partitioning by locally
improving the solution [4].

Step 2.5 SendScoutBees(pop_size,limit,lchrom): If the
solution trial reaches the limit value then it is abandoned and
new solution is generated randomly and replaced with the
abandoned one.

index = 1;

For each solution Si for i ∈ [2: pop_size]

 if (Si.trial > Sindex. trial)

 index= i;

 end of if statement

 end of for statement

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol.2, No. 4, August 2012

 729

if (Sindex. trial >=limit)

 popnext=generate_new_solution (index,lchrom);

 end of if statement

end of for statement

After specified number of iterations the final solution is

printed and runtime is calculated for multiple number of

partitioning instance groups in each size range of test circuit

instances.

IV. RESULTS AND DISCUSSIONS

The algorithm was implemented in the MATLAB (version
9) on an Intel Core i5 (2.60 GHz) machine with 4 GB memory.
The performance of the proposed algorithm is tested on
UCLA small circuit partitioning instances [6] generated by the
top-down partitioning-based placement process employed by
the UCLA Capo placer.

TABLE I. COMPARISON OF AVERAGE RESULTS FOR THE PROPOSED

ALGORITHM AND UCLA BRANCH AND BOUND PARTITIONER ON NUMEROUS

PARTITIONING INSTANCE GROUPS.

 As seen from Table I, average results obtained by the

proposed algorithm are consistently better than these obtained

by UCLA branch and bound partitioner for all partitioning

instances over different size ranges.

Figure 1. SPP combinational circuits Average Cut time

Figure 2. SPP combinational circuits Average Run time

These circuits are given in multiple number of partitioning

instance groups in each size range as shown in figure 1 and 2.

The circuit net lists are in the nodes/nets/weights format. The

average results from the proposed algorithm have been

compared with those obtained by the UCLA branch and bound

partition

V. CONCLUSIONS

In this paper, a new hybrid algorithm based on evolutionary
approach is proposed for circuit partitioning problem. The
proposed algorithm incorporates InverOver operator in
artificial bee colony algorithm along with simulated annealing
for further improvement of the resultant solution. The
algorithm is tested on 11 spp- circuit series of UCLA small
circuit partitioning instances given on the MARCO GSRC
VLSI CAD bookshelf website each further having set of
circuits .The experimental results showed that the proposed
algorithm give better and consistent results than UCLA branch
and bound partitioner. Results obtained show the versatility of
the proposed method in solving non polynomial hard problem
of circuit net list partitioning.

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,

Vol.2, No. 4, August 2012

 730

REFERENCES

[1] A.E. Langham and P.W. Grant. Using competing ant colonies to solve k-
way partitioning problems with foraging and raiding strategies. In D.

Floreano, J-D. Nicoud, and F. Mondada, editors, In Proc. 5th European

Conference on Artificial Life, ECAL'99, volume 1674 of LNCS, pages
621-625, Swiss Federal Institute of Technology, Lausanne, September

1999. Springer. (Research Report: CSR 13-99).

[2] C. J. Alpert, L. W. Hagen, and A. B. Kahng, “A hybrid

multilevel/genetic approach for circuit partitioning,” in Proc.
ACM/SIGDA Physical Design Workshop, 1996, pp. 100–105.

[3] D. Karaboga, An Idea Based On Honey Bee Swarm For Numerical

Optimization, Technical ReportTR06, Erciyes University, Engineering

Faculty, Computer Engineering Department, 2005.

[4] D. Kolar, J. Divokovic Puksec and Ivan Branica, “ VLSI Circuit

partitioning using Simulated annealing Algorithm”, IEEE Melecon,

Dubrovnik, Croatia,May 12-15,2004.

[5] D. Karaboga and B. Basturk, On the performance of artificial bee colony

(ABC) algorithm, Applied Soft Computing 8 (2008), pp.687-697, 2008.

[6] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/

[7] James D. McCaffrey,"Graph Partitioning using a Simulated Bee Colony

Algorithm", Proceedings of the 12th IEEE International Conference on
Information Reuse and Integration, August 2011, pp. 400-405.

[8] Kirkpatrick S., Gelatt C. Jr. and Vecchi M. Optimization by Simulated

Annealing. Science, 220(4598):671-680, 1983.

[9] Lingyu Sun, Ming Leng: An Effective Refinement Algorithm Based on

Swarm Intelligence for Graph Bipartitioning. ESCAPE 2007: 60-69

[10] M. Sait, Aiman H. El-Maleh, Rush H. Al-Abuji: Simulated evolution

algorithm for multiobjective VLSI netlist bi-partitioning. ISCAS (5)

2003: 457-460.

[11] N. Sherwani, Algorithms for VLSI Physical Design and Automation, 3rd

ed., Springer (India) Private Limited, New Delhi, 2005

[12] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation:

Theory and Practice. McCraw-Hill Book Company, Europe, 1995.

[13] T.Guo and Z.Michalewize. Inver-Over operator for the TSP. In Parallel

Problem Solving from Nature(1998)

[14] T. N. Bui and B. R. Moon, “A fast and stable hybrid genetic algorithm

for the ratio-cut partitioning problem on hypergraphs,” in Proceedings of

the ACM/IEEE Design Automation Conference, 1994, pp. 664–669.

[15] T. N. Bui, B. R. Moon, "Genetic Algorithm and Graph Partitioning". In

IEEE Transactions on Computers, Vol.45, No.7, July 1996, pp. 841-855.

[16] U. Benlic and J.-K. Hao. An Effective Multilevel Memetic Algorithm

for Balanced Graph Partitioning. In Proc. 22nd IEEE Intl Conf. Tools

with Artificial Intelligence, pages 121-128, 2010

