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Abstract—Economic Load Dispatch (ELD) problem is one of the 
most important problems to be solved in the operation and 
planning of a power system. The main objective of the economic 
load dispatch problem is to determine the optimal schedule of 
output powers of all generating units so as to meet the required 
load demand at minimum operating cost while satisfying system 
equality and inequality constraints. This paper presents an 
application of Genetic Algorithm (GA) for solving the ELD 
problem to find the global or near global optimum dispatch 
solution. The proposed approach has been evaluated on 26-bus, 
6-unit system with considering the generator constraints, ramp 
rate limits and transmission line losses. The obtained results of 
the proposed method are compared with those obtained from the 
conventional lambda iteration method and Particle Swarm 
Optimization (PSO) Technique. The results show that the 
proposed approach is feasible and efficient. 

Keywords- Economic load dispatch; Ramp rate limits; Particle 
swarm optimization; Genetic algorithm  

I.  INTRODUCTION 
      With the development of modern power systems, economic 
load dispatch (ELD) problem has received an increasing 
attention. The primary objective of ELD problem is to 
minimize the total generation cost of units while satisfying all 
units and system equality and inequality constraints [1]. In this 
problem, the generation costs are represented as curves and the 
overall calculation minimizes the operating cost by finding the 
point where the total output power of the generators equals the 
total power that must be delivered. In the traditional ELD 
problem , the cost function for each generator has been 
represented approximately by a single quadratic function and is 
solved using mathematical programming based optimization 
techniques such as lambda iteration method, gradient method, 
Newton method, linear and dynamic programming methods 
[2,3]. All these methods assume that the cost curve is 
continuous and monotonically increasing. In these methods, 

computational time increases with the increase of the 
dimensionality of the ELD problem. The most common 
optimization techniques based upon artificial intelligence 
concepts such as evolutionary programming [4], simulated 
annealing [5], artificial neural networks [6], tabu search [7], 
particle swarm optimization (PSO) [8-10] and genetic 
algorithm [11 -16] have been given attention by many 
researchers due to their ability to find an almost global or near 
global optimal solution for ELD problems with operating 
constraints. Major problem associated with these techniques is 
that appropriate control parameters are required. Sometimes 
these techniques take large computational time due to improper 
selection of the control parameters. The GA is a stochastic 
global search and optimization method that mimics the 
metaphor of natural biological evolution such as selection, 
crossover and mutation [17]. GA is started with a set of 
candidate solutions called population (represented by 
chromosomes). At each generation, pairs of chromosomes of 
the current population are selected to mate with each other to 
produce the children for the next generation. The chromosomes 
which are selected to form the new offspring are selected 
according to their fitness. In general, the chromosomes with 
higher fitness values have higher probability to reproduce and 
survive to the next generation. While the chromosomes with 
lower fitness values tend to be discarded. This process is 
repeated until a termination condition is reached (for example 
maximum number of generations). 

II. FORMULATION OF AN ELD PROBLEM WITH GENERATOR 
CONSTRAINTS 

The primary objective of the ELD problem is to minimize 
the total fuel cost of thermal power plants subjected to the 
operating constraints of a power system. In general, the ELD 
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problem can be formulated mathematically as a constrained 
optimization problem with an objective function of the form: 

           
1

     ( )  
n

T i i
i

F F P
=

= ∑                                             (1) 

    Where  TF is the total fuel cost of the system ($/hr), n is the 
total number of generating units and ( ) i iF P is the operating 
fuel cost of generating unit I ($/hr). Generally, the fuel cost 
function of the generating unit is expressed as a quadratic 
function as given in (2). 

                 2   ( )   i i i i i i iF P a P b P c= + +                             (2) 

    Where iP is the real output power of unit i (MW), ,i ia b and 
ic are the cost coefficients of generating unit i. The 

minimization of the ELD problem is subjected to the following 
constraints: 

A. Real Power Balance Constraint 
For power balance, an equality constraint should be 

satisfied. The total generated power should be equal to the total 
load demand plus the total line losses. The active power 
balance is given by: 

              
1

n

i D L
i

P P P
=

= +∑                                                 (3)  

      Where, DP is the total load demand (MW), LP represents 
the total line losses (MW). The total transmission line loss is 
assumed as a quadratic function of output powers of the 
generator units [18] that can be approximated in the form: 
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n n

L i ij j
i j
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= =

= Β∑ ∑                                      (4) 

      Where Β ij is the transmission loss coefficient matrix, 
iP and 

jP are the power generation of thi  and thj  units. 

B. Generator Power Limit Constraint 
The generation output power of each unit should lie 

between minimum and maximum limits. The inequality 
constraint for each generator can be expresses as:  

            , min , max≤ ≤i i iP P P                                            (5) 

     Where , miniP and , maxiP are the minimum and maximum 
power outputs of generator i (MW), respectively. The 
maximum output power of generator is limited by thermal 
consideration and minimum power generation is limited by the 
flame instability of a boiler. 

C. Ramp Rate Limit Constraint 
The generator constraints due to ramp rate limits of 

generating units are given as: 

 

1) As Generation Increases: 
                      ( ) ( 1)i t i t iP P UR−− ≤                                  (6) 

2) As Generation Decreases: 
                             ( 1) ( )i t i t iP P DR− − ≤                                  (7) 
 
     Therefore the generator power limit constraints can be 
modified as: 

 , min ( 1) ( ) , max ( 1)max( , ) min( , )i i t i i t i i t iP P DR P P P UR− −− ≤ ≤ +      (8) 

From equation (8), the limits of minimum and maximum 
output powers of generating units are modified as: 

      min, min ( 1)max( , )−= −i ramp i i t iP P P DR                      (9) 

      max, max ( 1)min( , )− +=i ramp i i t iP P P UR                     (10) 

     Where ( )i tP is the output power of generating unit i (MW) in 
the time interval (t), ( 1)i tP −  is the output power of generating 
unit i (MW) in the previous time interval (t-1), iUR is the up 
ramp limit of generating unit i (MW/time-period) and iDR is 
the down ramp limit of generating unit i (MW/time-period). 

The ramp rate limits of the generating units with all possible 
cases are shown in Figure 1. 

 

 

Figure 1.  Ramp rate limits of the generating units 

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION (PSO) 
Particle swarm optimization (PSO) is a population based 

stochastic optimization technique, inspired by social behavior 
of bird flocking or fish schooling. The PSO algorithm searches 
in parallel using a group of random particles. Each particle in a 
swarm corresponds to a candidate solution to the problem. 
Particles in a swarm approach to the optimum solution through 
its present velocity, its previous experience and the experience 
of its neighbors. In every generation, each particle in a swarm 
is updated by two best values. The first one is the best solution 
(best fitness) it has achieved so far. This value is called .Pbest  
Another best value that is tracked by the particle swarm 
optimizer is the best value, obtained so far by any particle in 
the population. This best value is a global best and called 

.gbest  Each particle moves its position in the search space and 
updates its velocity according to its own flying experience and 
neighbor's flying experience. After finding the two best values, 
the particle update its velocity according to equation (11). 

   1
1 1 2 2( ) ( )+ = × + × × − + × × −k k k k k k

i i i i iV V C R Pbest P C R gbest Pω       (11) 
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     Where k
iV is the velocity of particle i at iteration k, k

iP is 
the position of particle i at iteration k, ω  is the inertia weight 
factor, 1C and 2C  are the acceleration coefficients, 1R and 2R  
are positive random numbers between 0 and 1, k

iPbest is the 
best position of particle i at iteration k and kgbest is the best 
position of the group at iteration k. 

     The constants 1C and 2C  represent the weighting of the 
stochastic acceleration terms that pull each particle toward 
Pbest and gbest positions. Low values allow particles to roam 
far from the target regions, while high values result in abrupt 
movement toward, or past, target regions. Hence, the 
acceleration constants were often set to be 2.0 according to past 
experiences. Suitable selection of inertia weight in equation 
(11) provides a balance between local and global searches. 

     A low value of inertia weight implies a local search, while a 
high value leads to global search. As originally developed, the 
inertia weight factor often decreases often is decreased linearly 
from about 0.9 to 0.4 during a run. It was proposed in [19].  In 
general, the inertia weight ω  is set according to equation (12) 

           max min
max

max
Iter

Iter
ω ωω ω −

= − ×                                  (12) 

Where minω and maxω  are the minimum and maximum 
value of inertia weight factor, maxIter  corresponds to the 
maximum iteration number and Iter is the current iteration 
number. 

      The current position (searching point in the solution space) 
can be modified by equation (13). 

         1 1+ += +k k k
i i iP P V                                                   (13) 

IV. IMPLEMENTATION OF PSO FOR SOLVING ELD PROBLEM 
      The step by step procedure of the PSO technique for 
solving ELD problem is as follows: 

Step 1: Select the parameters of PSO such as population 
size (N), acceleration constants ( 1C  and 2C ), minimum and 
maximum value of inertia weight factor ( minω and maxω ). 

Step 2: Initialize a population of particles with random 
positions and velocities. These initial particles must be feasible 
candidate solutions that satisfy the practical operation 
constraints.  

Step 3: Evaluate the fitness value of each particle in the 
population using the objective function given in equation (2). 

Step 4: Compare each particle's fitness with the particles 
.Pbest If the current value is better than ,Pbest then set 

Pbest equal to the current value. 

Step 5: Compare the fitness with the population overall 
previous best. If the current value is better than ,gbest then set 
gbest equal to the current value. 

Step 6: Update the velocity of each particle according to 
equation (11). 

Step 7: The position of each particle is modified using 
equation (13). 

Step 8: Go to step 9 if the stopping criteria is satisfied, 
usually a sufficiently good fitness or a maximum number of 
iterations. Otherwise go to step 3. 

Step 9: The particle that generate the latest gbest is the 
optimal generation power of each unit with the minimum total 
cost of generation. 

      The procedure of particle swarm optimization technique 
can be summarized in the flow chart shown in Figure 2. 

 

Figure 2.  Flow chart of PSO technique 

V. GENETIC ALGORITHM (GA) 
The GA is a method for solving optimization problems that 

is based on natural selection, the process that drives biological 
evolution. The general scheme of GA is initialized with a 
population of candidate solutions (called chromosomes). Each 
chromosome is evaluated and given a value which corresponds 
to a fitness level in problem domain. At each generation, the 
GA selects chromosomes from the current population based on 
their fitness level to produce offspring. The chromosomes with 
higher fitness levels have higher probability to become parents 
for the next generation, while the chromosomes with lower 
fitness levels to be discarded. After the selection process, the 
crossover operator is applied to parent chromosomes to 



IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498,  
Vol.3, No.2, April 2013 

 348

produce new offspring chromosomes that inherent information 
from both sides of parents by combining partial sets of genes 
from them. The chromosomes or children resulting from the 
crossover operator will now be subjected to the mutation 
operator in final step to form the new generation. Over 
successive generations, the population evolves toward an 
optimal solution. The features of GA are different from other 
traditional methods of optimization in the following respects 
[20]: 

• GA does not require derivative information or other 
auxiliary knowledge. 

• GA work with a coding of parameters instead of the 
parameters themselves. For simplicity, binary coded is 
used in this paper. 

• GA search from a population of points in parallel, not 
a single point. 

• GA use probabilistic transition rules, not deterministic 
rules. 

A. Genetic Algorithm Operators 
At each generation, GA uses three operators to create the 

new population from the previous population: 

1) Selection or Reproduction: 
        Selection operator is usually the first operator applied on 
the population. The chromosomes are selected based on the 
Darwin's evolution theory of survival of the fittest. The 
chromosomes are selected from the population to produce 
offspring based on their values. The chromosomes with higher 
fitness values are more likely to contributing offspring and are 
simply copied on into the next population. The commonly used 
reproduction operator is the proportionate reproduction 
operator. The ith string in the population is selected with a 
probability proportional to iF where, iF is the fitness value for 
that string. The probability of selecting the ith string is: 

 

                                                                                          (14) 

 

      Where n is the population size, the commonly used 
selection operator is the roulette-wheel selection method. Since 
the circumference of the wheel is marked according to the 
string fitness, the roulette-wheel mechanism is expected to 
make /i avgF F  copies of the ith string in the mating pool. The 
average fitness of the population is: 

                      1

n

i
iavg

F
F

n
==

∑
                                                    (15) 

2) Crossover or Recombination: 
       The basic operator for producing new chromosomes in the 
GA is that of crossover. The crossover produce new 
chromosomes have some parts of both parent chromosomes. 
The simplest form of crossover is that of single point crossover. 
In single point crossover, two chromosomes strings are selected 

randomly from the mating pool. Next, the crossover site is 
selected randomly along the string length and the binary digits 
are swapped between the two strings at crossover site. 

3) Mutation: 
      The mutation is the last operator in GA. It prevents the 
premature stopping of the algorithm in a local solution. This 
operator randomly flips or alters one or more bits at randomly 
selected locations in a chromosome from 0 to 1 or vice versa. 

B. Parameters of GA 
The performance of GA depends on choice of GA 

parameters such as: 

1) Population Size (N):  
     The population size affects the efficiency and performance 
of the algorithm. Higher population size increases its diversity 
and reduces the chances of premature converge to a local 
optimum, but the time for the population to converge to the 
optimal regions in the search space will also increase. On the 
other hand, small population size may result in a poor 
performance from the algorithm. This is due to the process not 
covering the entire problem space. A good population size is 
about 20-30, however sometimes sizes 50-100 are reported as 
best. 

2) Crossover Rate: 
      The crossover rate is the parameter that affect the rate at 
which the process of cross over is applied. This rate generally 
should be high, about 80-95%.  

3) Mutation Rate:  
      It is a secondary search operator which increases the 
diversity of the population. Low mutation rate helps to prevent 
any bit position from getting trapped at a single value, whereas 
high mutation rate can result in essentially random search. This 
rate should be very low. 

C. Termination of the GA 
The generational process is repeated until a termination 

condition has been satisfied. The common terminating 
conditions are: fixed number of generations reached, a best 
solution is not changed after a set number of iterations, or a 
cost that is lower than an acceptable minimum. 

VI. GA APPLIED TO ELD PROBLEM 
The step by step algorithm of the proposed method is 

explained as follow: 

Step 1: Read the system input data, namely fuel cost curve 
coefficients, power generation limits, ramp rate limits of all 
generators, power demands and transmission loss coefficients. 

Step 2: Select GA parameters such as population size, 
length of string, probability of crossover, probability of 
mutation and maximum number of generations.                                        

Step 3: Generate randomly a population of binary string.  

Step 4: The generated string is converted in feasible range 
by using equation (16):                           

1

P r

=

=
∑

i
i n

j
j

F

F
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(16)  

                                                                     

      Where: L is the string length and ( )m iP is the decimal value 
of ith generating unit in the string. 

Step 5: Calculate the fitness value for each string in the 
population. 

Step 6: The chromosomes with lower cost function are 
selected to become parents for the next generation. 

      Step 7: Perform the crossover operator to parent 
chromosomes to create new offspring chromosomes. 

Step 8: The mutation operator is applied to the new 
offspring resulting from the crossover operation to form the 
new generation. 

Step 9: If the number of iterations reaches the maximum, 
then go to step 10. Otherwise, go to step 5. 

Step 10: The string that generates the minimum total 
generation cost is the solution of the problem. 

        The procedure of Genetic Algorithm (GA) can be 
summarized in the flow chart shown in Figure 3. 

 

Figure 3.  Flow chart of Genetic Algorithm 

VII. CASE STUDY AND SIMULATION RESULTS 
To verify the effectiveness of the proposed algorithm, a six 

unit thermal power generating plant was tested. The proposed 
algorithm has been implemented in MATLAB language. The 
proposed algorithm is applied to 26 buses, 6 generating units 
with generator constraints, ramp rate limits and transmission 

losses [21]. The results obtained from the proposed method 
will be compared with the outcomes obtained from the 
conventional lambda iteration method and PSO method in 
terms of the solution quality and computation efficiency. The 
fuel cost data and ramp rate limits of the six thermal generating 
units were given in Table I. The load demand for 24 hours is 
given in Table II. B-loss coefficients of six units system is 
given in Equation (17). Table III gives the optimal scheduling 
of all generating units, power loss and total fuel cost for 24 
hours by using PSO technique. Table IV gives the optimal 
scheduling of all generating units, power loss and total fuel cost 
for 24 hours by using Genetic Algorithm and Table V shows 
the total fuel cost comparison between lambda iteration 
method, PSO method and GA method. Figures (4- 9) show the 
relation between fuel cost of each unit and 24 hours by the 
lambda iteration method, PSO method and GA method.  

Some parameters must be assigned for the use of GA to 
solve the ELD problems as follows: 

• Population size = 20 

• Maximum number of generations = 100 

• Crossover probability = 0.8 

• Mutation probability = 0.05 

And the parameters used in PSO technique to solve the 
ELD problem as follows: 

• Population size = 20 

• Maximum number of iterations = 100 

• Acceleration constants 1C = 2.0 and 2C = 2.0 

• Inertia weight parameters maxω = 0.9 and minω = 0.4 

TABLE I.  FUEL COST COEFFICIENTS AND RAMP RATE LIMITS OF SIX 
THERMAL UNITS SYSTEM 

Unit 
ai 

($/MW2) 

bi 

($/MW) 

ci 

($) 

Pi, min 

(MW) 

Pi, max 

(MW) 

URi 

(MW/H) 

DRi 

(MW/H) 

1 0.0070 7.0 240 100 500 80 120 

2 0.0095 10.0 200 50 200 50 90 

3 0.0090 8.5 220 80 300 65 100 

4 0.0090 11.0 200 50 150 50 90 

5 0.0080 10.5 220 50 200 50 90 

6 0.0075 12 190 50 120 50 90 

TABLE II.  LOAD DEMAND FOR 24 HOURS OF SIX  UNITS SYSTEM 

Time 

(H) 

Load   

(MW) 

Time 

(H) 

Load   

(MW) 

Time 

(H) 

Load   

(MW) 

Time 

(H) 

Load  

(MW) 

1 955 7 989 13 1190 19 1159 

2 942 8 1023 14 1251 20 1092 

3 935 9 1126 15 1263 21 1023 

4 930 10 1150 16 1250 22 984 

5 935 11 1201 17 1221 23 975 

6 963 12 1235 18 1202 24 960 

max min
min ( )( ). 

2 1
−

= +
−

i i
gi i m iL

P PP P P
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3

  1 .7       1 .2       0 .7       -  0 .1       -  0 .5      -  0 .2

  1 .2       1 .4       0 .9        0 .1         -  0 .6      -  0 .1

  0 .7       0 .9       3 .1        0 .0         -  1 .0      -  0 .6
1 0

 -  0 .1      0 .1       0 .0   
i jB −

=
     0 .2 4       -  0 .6      -  0 .8

 -  0 .5     -  0 .6     -  0 .1       -  0 .6       1 2 .9      -  0 .2

 -  0 .2     -  0 .1     -  0 .6       -  0 .8       -  0 .2      1 5 .0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

        (17) 

TABLE III.  OUTPUT POWERS, POWER LOSSES AND TOTAL FUEL COST FOR 
24 HR. BY PSO METHOD OF 6-UNITS SYSTEM 

Hr. 
P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

Loss   

(MW) 

Fuel cost  

($) 

1 381.5 120.8 210.4 86.5 112.1 50.0 6.53 11410.86 
2 375.6 118.3 208.2 84.9 111.2 50.0 6.35 11248.5 
3 372.1 116.8 207.0 84.5 110.6 50.0 6.25 11161.44 
4 369.6 115.8 206.1 84.3 110.2 50.0 6.17 11099.41 
5 372.1 116.8 207.0 84.5 110.6 50.0 6.25 11161.44 
6 384.9 122.2 211.6 87.7 113.0 50.0 6.64 11511.17 
7 394.9 126.2 215.8 92.0 116.8 50.0 7.00 11838.94 
8 399.0 133.7 222.1 96.2 122.7 56.4 7.38 12270.52 
9 420.7 145.6 239.2 114.8 140.7 73.2 8.57 13599.88 

10 427.7 148.1 243.1 118.8 143.3 77.7 8.85 13914.45 
11 443.1 154.9 247.8 127.5 151.0 85.9 9.50 14588.85 
12 452.3 160.5 251.5 133.1 155.4 91.9 9.95 15042.84 
13 439.1 153.2 246.5 125.5 150.2 84.4 9.37 14442.65 
14 456.1 162.7 254.3 136.3 157.9 93.6 10.18 15257.49 
15 458.8 164.5 255.7 138.9 159.2 95.9 10.32 15419.10 
16 455.6 162.5 254.1 136.2 157.9 93.6 10.16 15244.01 
17 447.6 158.8 250.4 129.9 153.7 90.0 9.78 14855.29 
18 443.5 155.0 248.0 127.6 151.1 86.0 9.97 14602.16 
19 430.7 149.6 244.1 120.3 144.2 78.8 8.15 14032.85 
20 414.3 141.9 233.4 109.2 133.8 67.2 8.38 13157.51 
21 399.0 133.7 222.1 96.2 122.7 56.4 7.38 12270.52 
22 393.7 125.3 214.9 90.9 115.9 50.0 6.94 11775.78 
23 390.2 124.3 213.6 89.0 114.3 50.0 6.82 11662.16 
24 383.5 121.5 211.0 87.4 112.9 50.0 6.60 11473.52 

Total Fuel Cost ($) 313041.40 

TABLE IV.  OUTPUT POWERS, POWER LOSSES AND TOTAL FUEL COST FOR 
24 HR. BY GA OF 6-UNITS SYSTEM 

Hr. 
P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

P4 

(MW) 

P5 

(MW) 

P6 

(MW) 

Loss  

(MW) 

Fuel cost  

($) 

1 378.4 118.4 210.7 85.4 118.4 50.0 6.58 11411.42 
2 373.2 116.0 207.8 84.7 116.4 50.0 6.38 11249.19 
3 371.0 114.8 206.1 83.7 115.3 50.0 6.28 11162.06 
4 369.3 113.8 205.1 82.9 114.8 50.0 6.21 11099.99 
5 371.0 114.8 206.1 83.7 115.3 50.0 6.28 11162.06 
6 381.3 119.8 212.1 86.5 119.7 50.0 6.69 11511.66 
7 388.9 125.0 217.1 90.8 123.9 50.0 7.06 11838.99 
8 395.8 132.8 222.0 97.7 126.3 55.5 7.38 12270.42 
9 422.5 147.3 239.5 114.3 138.0 72.7 8.57 13599.96 

10 427.1 153.0 243.5 118.8 140.0 76.2 8.86 13914.33 
11 438.9 161.9 252.0 128.5 145.8 83.1 9.51 14588.41 
12 446.2 166.8 257.8 134.6 150.4 89.0 9.95 15042.04 
13 436.9 160.1 250.1 126.2 144.2 81.5 9.37 14442.43 
14 450.2 169.5 260.1 136.7 152.7 91.7 10.18 15256.81 
15 452.5 171.9 261.6 139.6 154.2 93.2 10.33 15418.34 
16 450.0 169.4 259.9 136.5 152.6 91.5 10.16 15243.36 
17 443.0 164.9 255.7 131.9 148.2 86.7 9.76 14854.86 
18 439.1 162.1 252.2 128.7 145.9 83.2 9.52 14601.71 
19 428.9 154.9 244.5 120.8 141.1 77.4 8.96 14032.65 
20 411.9 142.0 236.1 108.4 135.3 66.2 8.20 13157.46 
21 395.8 132.8 222.0 97.7 126.3 55.5 7.38 12270.42 
22 387.9 124.1 215.9 89.8 123.0 50.0 6.99 11775.86 
23 385.4 122.1 214.6 88.1 121.5 50.0 6.87 11662.42 
24 380.3 119.0 211.7 86.2 119.2 50.0 6.65 11474.06 

Total Fuel Cost ($) 313040.90 

TABLE V.  TOTAL FUEL COST COMPARISON BETWEEN PROPOSED GA 
METHOD, LAMBDA ITERATION METHOD AND PSO METHOD OF 6-UNITS SYSTEM 

Method    Total Fuel Cost ($) 

Lambda iteration method 313045.50 

Particle Swarm Optimization (PSO) 313041.40 

Genetic Algorithm (GA) 313040.90 
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Figure 4.   Fuel cost of unit 1 versus 24 hr by the three used method  
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Figure 5.  Fuel cost of unit 2 versus 24 hr by the three used method 
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Figure 6.  Fuel cost of unit 3 versus 24 hr by the three used method 
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Figure 7.  Fuel cost of unit 4 versus 24 hr by the three used method 

2 4 6 8 10 12 14 16 18 20 22 24
1400

1500

1600

1700

1800

1900

2000

2100

2200

Time (24hr)

F5
 ($

/h
r)

 

 
Lagrangian method
Genetic Algorithm
PSO method

 

Figure 8.  Fuel cost of unit 5 versus 24 hr by the three used method 
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Figure 9.  Fuel cost of unit 6 versus 24 hr by the three used method 

 

When the Lambda iteration method is used to solve this 
system, it has been observed that the minimum cost curve 
converges within the range of 1500 - 2000 iterations while in 
genetic algorithm and particle swarm optimization technique 
the cost curve converge within the range of 30-50 iterations. 
So the computational time of the proposed algorithm is much 
less than the Lambda iteration method. 

VIII. CONCLUSIONS 
In this paper, genetic algorithm (GA) is used to solve the 

ELD problem. The proposed algorithm has been successfully 
implemented for solving the ELD problem of a power system 
consists of 6 units with different constraints such as real power 
balance, generator power limits and ramp rate limits. From the 
tabulated results, it is clear that the total fuel cost obtained by 
GA is comparatively less compared to other methods. GA 
approach gives high quality solutions with fast convergence 
characteristic compared to the lambda iteration method. The 
lambda iteration method is also applicable, but it can converge 
to the minimum generation cost after so many iterations. So, 
the computational time of the lambda iteration method is much 
greater than the proposed algorithm. Simulation results 
demonstrate that the proposed method is powerful and practical 
tool for obtaining global minimum or near global minimum of 
total fuel cost. 
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