
IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 313

TorusBFS: A Novel Message-passing Parallel
Breadth-First Search Architecture on FPGAs

Guoqing LEI, Rongchun LI, Song GUO
National Laboratory for Parallel and

Distributed Processing
National University of Defense Technology

Changsha, China

Fei XIA
Electronic Engineering College, Naval University of

Engineering
Wuhan, China

Abstract—Graphs are a fundamental data structure used
extensively in numerous domains. In graph-based applications,
Breadth-First Search (BFS) is a key component which suffers
from long latency of memory accesses. In this paper, we present a
novel message passing parallel BFS architecture namely
TorusBFS on field-programmable gate array (FPGA). By
utilizing the on-chip memories to store the visitation status of
vertices and to implement the current/next queue, our
architecture reduces the accesses to the off-chip memories. We
also present a on-chip 2-D torus message passing structure to
reduce latencies of exchanging information among processing
elements (PEs). Limited to the inefficient random write accesses
to the off-chip memories, the experimental results show that our
architecture on a single FPGA achieves relative lower
performance compared with related works based on Convey HC-
1/HC-2 platforms. Nevertheless, our TorusBFS is the first
architecture that can be easily extended to multiple FPGAs in a
distributed environment.

Keywords-Breadth-First Search; Graph500; FPGA; Message
Passing

I. INTRODUCTION
Graphs are a fundamental data structure widely used in

numerous domains such as social networking analysis [1],
bioinformatics [2] and artificial intelligence. Many data-
intensive scientific problems can be solved through graph
analysis. In the graph-based applications, Breadth First Search
(BFS) is an important building block. Recently, BFS has
attracted much more attentions as the kernel benchmark of the
Graph500 rankings [4], which is used to measure the
performance of supercomputers for the data-intensive
applications.

Efficient parallel processing of large graphs is considered
challenging [3]. The performance of graph-based applications
is severely limited by the random nature of memory access
patterns, which is a fundamental property of graph processing
algorithms. Although the compute and bandwidth resources in
modern computer architectures have been increasing, graph
processing still suffers from the ineffective utilization of
compute and bandwidth resources [7].

Recently, the field-programmable gate array (FPGA) has
become a promising high performance computing platform.
Combining the flexibility of software and highly customized
hardware design, FPGAs can offer superior performance for

many specific applications. Previous studies demonstrated the
potentials of implementing the graph traversal algorithm on
FPGAs. These studies either target the commercial servers
namely Convey HC-1/HC-2 with four Xilinx Virtex-5
FPGAs[17][19] or in-house designed single Virtex-5
FPGA[16][18]. Limited to the on-chip memory resources for
Virtex-5 FPGAs, all these previous designs can not fully
exploit the benefits of on-chip memories, which is significant
for improving the performance for graph processing algorithms.
In this paper, we introduce a novel message-passing
architecture for parallel BFS on recent high-end Xilinx Virtex-
7 FPGAs (XC7VX485T), which has on-chip memories with 4×
larger volume over that of Virtex-5. The main contributions for
our approach are as follows:

• We introduce a novel on-chip bitmap-based distributed
queue implementation method which avoids the off-
chip memory accesses to decide whether the vertices
are in the current level or not.

• We introduce a novel 2-D torus message-passing
structure to exchange information among processing
elements (PEs). Compared with related work, our
structure reduces the numbers of on-chip FIFOs used
to exchange information significantly.

• We have implemented the TorusBFS on Xilinx
XC7VX485T FPGA, and compare the experimental
results with related works based on the Convey HC-
1/HC-2 platforms.

• Our TorusBFS structure is highly scalable and can be
easily mapped to multiple FPGAs.

The remainder of this paper is organized as follows. We
review the background and related works in section II. The
proposed TorusBFS architecture is illustrated in section III. In
Section IV, we extend the TorusBFS to multi-FPGA systems.
The experimental results are presented in section V. Section VI
concludes this paper.

II. BACKGROUND AND RELATED WORKS

A. Level-synchronous BFS algorithm
Our implementation is based on the level-synchronous BFS

algorithm, as the algorithm 1 shows. The input of algorithm is
an undirected graph G(V, E) composed of a set of vertices V

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 314

and a set of edges E. Let the number of vertices and edges be n
and m. Given a source vertex s∈V, the BFS algorithm explores
the edges of G to produce a breadth-first search tree rooted at s.
The output of BFS consists of two arrays: Level[1:n] and
Father[1:n], where Level[v] and Father[v] denote the level and
father of vertex v in the BFS tree respectively. The vertices to
be explored in the current/next level are kept into two sets
namely CQ and NQ.

As the algorithm begins, Level[v] and Father[v] are set to
be 0 and -1 for v∈V (lines 1-3). For the source vertex s,
Level[s] and Father[s] are set to be 1 and s (lines 4-5). Initially,
the set CQ only contains the source vertex and NQ is empty
(lines 6-7). Let the variable level denotes the level value of
vertices in CQ. For the CQ only containing source, the level
value is 1 (line 7). The level-synchronous BFS algorithm is
composed of L iterations, where L is the maximal level of the
BFS tree rooted at s. In each iteration, for each vertex u∈CQ,
the adjacency list of u will be traversed (line 12). If neighbor v
has not been visited (Level[v] = 0) (line 13), then Level[s] and
Father[s] will be set to be as level+1 and u (lines 14-15). At the
same time, the vertex v will be added to the set NQ (line 16).
After the adjacency list of all vertices of CQ have been
traversed, the NQ and CQ will be swaped for the exploring in
the next iteration (line 17). Finally, the BFS algorithm finishes
when CQ is empty.

B. Parallel BFS algorithm
For the system with np processors, a natural way is to

partition set of vertices V into np disjoint sets Vi, where each
processor own |Vi|=|V|/np vertices. Each processor is
responsible for exploring the vertices of its own. For the ith
processor, the local sets namely CQi and NQi are also defined

to keep the vertices in the current/next level. Each processor
works similarly with the simple level-synchronous BFS
algorithm. For each vertex u∈CQi of ith processor, each
adjacent vertex v of u will be checked. For vertex v that has not
been visited, we set the parent of v to be u. At the same time, v
should also be added to NQi if v∈Vi. Otherwise, v will be sent
to the NQj of jth processor if v∈Vj. For parallel BFS algorithm,
all processors must synchronize after the processing of CQi in
each level has been finished.

C. Related works
In order to improve the performance of graph processing

especially BFS, many researches have been conducted for
various computer architectures such as CPUs, GPUs (Graphics
Processing Units), MIC (Many Integrated Core), and FPGAs.

Agarwal et al.[5] proposes a scalable BFS implementation
for advanced multicore processors such as Intel Nehalem EP
and EX processors. Xia et al.[6] achieved high-quality results
for BFS explorations on Intel and AMD processors. Chhugani
et al.[7] reduces the access overhead of the visitation status of
graph vertices by eliminating the atomic operations. Beamer et
al.[8] designs a direction-optimizing BFS algorithm, which
reduces the memory access by combing the top-down and
bottom-up algorithms and obtains superior performance.

For the GPU implementations, Luo et al.[9] present a GPU
implementation of BFS that uses a hierarchical queue
management technique. Hong et al.[10] present a novel virtual
warp-centric programming method to address the problem of
workload imbalance. They improve the performance by several
factors upon previous GPU implementations. Hong et al.[11]
also present a hybrid method which combines the CPU and
GPU execution. Merrill et al.[12] present a BFS parallelization
focusing on fine-grained task management constructed from
efficient prefix sum. They achieve higher performance over
previous works using single and quad-GPU configurations.
Zou et al.[13] present a direction-optimizing implementation on
CPU-GPU heterogeneous platforms. They obtain improvement
over the highest pervious performance for shared memory
systems.

For the MIC-implementations, Saule et al. [14] evaluate
scalability results of three variations of a breadth-first search
algorithm using programming models such as OpenMP, Cilk
Plus and Intels TBB. Gao et al. [15] discuss how to use MIC to
accelerate the BFS algorithm and propose a heterogeneous
hybrid BFS algorithm combining the top-down and bottom-up
version.

For the FPGA-implementations, Wang et al. [16] propose a
message-passing multi-softcore architecture on FPGA for
Breadth-First search. The vertices of the graph are divided into
equal-sized disjoint sets owned by different softcores. In their
work, the next queue is implemented by transferring the
vertices in the next level to the corresponding cores using
FIFOs. For a system with p cores, p2 FIFOs are needed for bi-
directional communication between each pair of cores, which
limits the scaling of the algorithm. Betkaoui et al. [17]
introduce a parallel graph exploration algorithm using the same
division method as Wang et al.[16]. They do not implement the

Identify applicable sponsor/s here. (sponsors)

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 315

current/next queue. The vertices in the current level are
determined by repeatedly reading the distance of vertex which
is compared with current level value. Ni et al.[18] present a
multi-channel memory based architecture for parallel BFS
algorithm. They use two DRAM modules and two SRAM
chips to increase the bandwidth of the off-chip memory. Attia
et al.[19] present an efficient reconfigurable architecture that
adopts a custom graph representation and restructuring of the
conventional BFS algorithm for parallel BFS. They store the
current queue and next queue in the off-chip memory which are
shared by all kernels. The current queue are split and read by
interleaving method by different kernels. The writing to the
next queue are solved by a token circulating through the
kernels every clock cycle.

III. PROPOSED ARCHITECTURE
For efficiently processing parallel BFS algorithm on

FPGAs, we must partition the tasks to multiple processing
elements performing in parallel. In this paper, we divide the
vertices into equal-sized disjoint sets assigned to multiple graph
processing elements (PEs) to process in parallel. Each of PEs is
responsible for exploring its assigned vertices. These vertices
are also called local vertices for each PE. For those vertices
belonging to the other PEs, a router is designed to send
messages to the target PE.

The architecture of our message-passing parallel BFS
algorithm is illustrated as Figure 1. The master module is
responsible for initializing the PEs and routers in the PE-router
Torus 2-D Array, and synchronizing the searching process of
each level. It also returns the finish signal to the host when the
BFS algorithm is done. Let the number of PEs is np and the
width of the Torus 2-D array is d which satisfies np=d2. Each
of PEs is assigned a router R which is used to send and receive
messages to and from other PEs respectively. The multi-ports
memory access module is responsible for multiplexing the
memory requests of PEs to the single DDR3 memory controller
for improving the bandwidth utilization. Three DDR3 memory
chips are available, two of which are used to store the graph
data and the other one is used to store the output results.

Figure 1. Block diagram of our BFS architecture.

A. PEs design
Algorithm 2 presents the BFS kernel that runs on the PE.

The PE consists of two main phases namely exploring and

messaging that execute in parallel. A detailed description of
each phase follows:

1. Exploring the vertices of current level. In this phase,
the values in the Bitmap_CQ for each local vertex i are read to
judge whether i is in the current level. If Bitmap_CQ[i]=1, the
global vertex id u is generated by combining the pe_id and
local id i together. Then the R array of the global vertex u is
read to get the start and end positions of adjacency list. In order
to deal with vertex with large number of neighbors, q neighbors
are loaded from off-chip memory and processed each time. For
each neighbor v of the vertex u, if v belongs to this PE and v
has not been visited, then a process called
Process_unvisited_vertex(v) is performed on vertex v which
includes four operations: 1) Add the vertex v to the next queue
by setting Bitmap_NQ[v]=1; 2) Set the bitmap[v]=1 to indicate
that the vertex v has been visited; 3) Set the Level[v] to be
level+1; 4) Set the Father[v]=u. Otherwise, if v belongs to
other PEs, then the message (u, v) is sent to the router and then
forwarded to the owner PE of vertex v. After each local vertex i
has finished processing, the value Bitmap_CQ[i] will be set to
0. The swap between CQ and NQ is implemented by
alternating reading/writing between Bitmap_CQ and
Bitmap_NQ depending on the level value.

2. Processing the messages from other PEs. In this stage,

the fifo m_fifo is read if there are messages sent to this PE. For
each message (u, v), the local bitmap Bitmap[v] is read to
determine whether the vertex v has been visited. If the vertex v

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 316

has not been visited, the process Process_unvisited_vertex(v) is
then preformed on vertex v.

Figure 2. Block diagram of Router design.

B. Router design
The router module is responsible for receiving messages

from five incoming directions including up, down, left, right
and local PE and sending these messages to five outgoing
directions that are opposite from the incoming. Figure 2 shows
the structure of the router design. There are five FIFOs caching
the messages from the five incoming directions. The module
Scheduler repeatedly reads messages from the incoming FIFOs
and decide the forwarding. The positions of both router and the
PE can be denoted using their row indices and column indices
in the 2-D Torus array. In this way, when the route r in the
position (ri, rj) needs to process a message forwarding to the
target PE t in the position (ti, tj), the forwarding direction can be
generated by the rules as the table I shows. The rules work in
two steps. Firstly, ri and ti are compared. The message will be
sent to the router in the up direction if ti < ri, otherwise the
down direction will be chosen. Secondly, if ri equals ti, rj and tj
are then compared to choose the forwarding direction from the
left three directions: left, right or local.

TABLE I. FORWARDING RULES OF ROUTERS

Forwarding direction Rules
up ti < ri

down ti > ri
left ti = ri∧tj < rj

right ti = ri ∧tj > rj
local ti = ri ∧tj = rj

A conflict occurs when more than one message are sent to
the same output port at the same time. To solve this problem,
five counters are used to record the number of messages for
each incoming FIFO. The message from the FIFO with the
highest counter will be sent to the output port when conflict
occurs. After the message has been forwarded, the next
message from that FIFO will be read as soon as possible. In our
design, the total number of FIFOs for the routers to exchange
information among np PEs is 5×np, significantly lower than
(np)2 of Wang et al.[16].

IV. BFS ON MULTI-FPGA SYSTEM
Our TorusBFS can be easily extended to multi-FPGA

systems. The techniques presented in this section can be
applied to both multiple FPGAs on one host processor and
mutiple FPGAs distributed on mutiple host processors. The
multi-FPGA system with mutiple FPGAs on one single host
processor is considered in this paper. When mutiple host
processors are employed, the communication between FPGAs
can be replaced by communication between processors.

We assume that TorusBFS is performed on a 2 × 2 2D grid
of FPGAs as shown in Figure 3. For each FPGA, graph data
and BFS results are stored in its local DRAMs. Each FPGA can
communicate with its neighbors.

Figure 3. Multi-FPGA system for TorusBFS.

For a single FPGA, one 2D Torus array of PE-routers is
employed to execute exploring of vertices in the same level at a
time. Each partition of vertices is executed on the PE in parallel.
For a multi-FPGA system with each FPGA containing one 2D
Torus arrya of PE-routes, the vertices of graph will be divided
into partitions equally distributed on mutiple FPGAs. The
partition of vertices on each FPGA are processed as the single
FPGA system. The fathers and levels of vertices in each
partition are stored in one of local DRAMs of each FPGA.
Inter-FPGA communication is required to exchange messages
between FPGAs. In practice, inter-FPGA communication can
be implemented by only connecting the data transfer controllers
of the 2D Torus array of PE-routers in neighoring FPGAs.

One typical advantage of multi-FPGA system over the
single-FPGA is the linear increasing of off-chip DRAM
bandwidth. For the data-intensive application such as BFS, the
performance of our TorusBFS scales linearly theoretically with
the number of FPGAs in a distributed computing environment.
This is because: 1) the bottleneck of our TorusBFS is the
latency of off-chip memory accesses; 2) the latency of message
passing between FPGAs can be ignored by directly connecting
the data transfer controllers between neighboring FPGAs.

V. EXPERIMENTAL RESULTS
We test our TorusBFS architecture on the self-designed

FPGA prototyping system. The system is a high performance
computing embedded platform that consists a zynq processor
and a coprocessor of one programmable Virtex-7 XC7VX485T
FPGA. For the off-chip memories, three DDR3 chips each of
which has 8GB volume are connected to the FPGA. There are
also three on-chip memory controller generated with Xilinx

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 317

MIG 7 Series tools to provide access to the corresponding off-
chip DDR3 chips. The memory controller works at frequency
166MHz and allows accesses to DDR3 memory at peak
bandwidth of 10.6 GB/s. We have implemented 16 PEs and 16
routers in our design. The size of bitmap in each PE is 256K
bits, which means that the maximal scale that our TorusBFS
can process is 22. We have test the performance of TorusBFS
on only one Virtex-7 FPGA recently, the performance results
for four FPGAs are estimated according to the linear scalability
characteristics of TorusBFS on multi-FPGA systems.

We use scale-free graphs to test the performance of our
TorusBFS. The scale-free graphs are generated using the
Graph500 benchmark suit based on the Recursive-Matrix (R-
MAT) graph model. The parameters of the R-MAT graph are
set as the default values of the Graph500 benchmark (A=0.57,
B=0.19, C=0.19). The performance is measured by taking the
average execution time of 64 BFS runs from 64 different
source vertices which are randomly chosen. The performance is
reported as the throughput in billions of traversed edges per
second (GTEPs).

Figure 4. BFS performance against related works for RMAT graphs.

A. Performance analysis
Figure 4 demonstrate how our TorusBFS performs against

the BFS implementations from Betkaoui et al.[17] and Attia et
al.[19]. Both of these two implementations target the same
platform, the Convey HC-1/HC-2, which consists of a
coprocessor board of four programmable Virtex5-LX330
FPGAs. The comparison shows throughput with number of
vertices that spans from 220 to 222 and average vertex degree
that spans from 8 to 64.

For the average degree of 8, the TorusBFS on one FPGA
performs as well as that of Betkaoui et al.[17] for scale 20 and
21. For the average degrees of 8 and 16, our TorusBFS on four
FPGAs performs better than that of Betkaoui et al.[17] for all
scale ranges. While for the larger degrees of 32 and 64, our
TorusBFS on both one and four FPGAs performs worse than

that of both Betkaoui et al.[17] and Attia et al.[19]. It can be
inferred that the workload imbalance and latency of off-chip
memory access limit the higher processing rate of TorusBFS.

Figure 5 shows as the average vertex degree grows from 8
to 64, how the performance of our TorusBFS scales on single
FPGA. The performance for average vertex degrees of 16, 32
and 64 is similar and larger than that of 8. It can be inferred that
larger vertex degrees introduce more memory accesses and
improve the bandwidth utilization ratio.

Figure 5. Performance scaling with respect to average vertex degree for
RMAT graphs of scale 20, 21 and 22.

B. Resource utilization
Table II shows the device resource utilization compared

with related implementations. Our TorusBFS architecutre
consumes about 91% of block ram memories, most of which
are used for storing the visitation status of vertices and
implementing current/next queue. However, it should be noted
that about 10% of the FPGAs’ logical and 15% of the block
rams are occupied for the required interfaces (e.g. Memory
controller interface, and memory requests multiplexing).

TABLE II. RESOURCE UTILIZATION

 Slice LUTs BRAMs Slice LUT-FF

Betkaui ea al.[17] 80% 64% n/a

Attia et al.[19] 55% 55% 74%

Our TorusBFS 66% 91% 21%

VI. CONCLUSION
In this paper, we have proposed a novel FPGA-based

message-passing parallel BFS architecture, namely TorusBFS.
Compared with other implementations based on Convey HC-
1/HC-2 platforms, our implementation shows relative lower
performance, which resulted from the lower off-chip memory
bandwidth utilization. One limitation of our TorusBFS is
higher consumption of on-chip block rams. The graph scale
over 22 can not be processed in a single FPGA chip. In order to
perform BFS for larger graphs scale (e.g. 23), more advanced
FPGA chips may be needed. Nevertheless, our TorusBFS can

IRACST – Engineering Science and Technology: An International Journal (ESTIJ), ISSN: 2250-3498
Vol.5, No.5, October 2015

 318

easily be mapped to mutiple FPGA chips to process larger
graphs, the performance scales linearly with the number of
FPGAs theoretically. We will test the performance of
TorusBFS on multi-FPGA system in future.

ACKNOWLEDGMENT
This work is partially supported by National High

Technology Research and Development Program of China
under No. 2012AA012706, and by National Science
Foundation China under Grants 61125201, 61202127 and
61303061.

REFERENCES
[1] Ediger, D., Jiang, K., Riedy, J., Bader, D.A., Corley, C., Farber, R.,

Reynolds, W.N.: Massive social network analysis: Mining twitter for
social good. In: Parallel Processing (ICPP), 2010 39th International
Conference on. pp. 583–593. IEEE (2010)

[2] Alvarez Vega, M.: Graph kernels and applications in bioinformatics
(2011)

[3] Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in
parallel graph processing. Parallel Processing Letters 17(01), 5–20
(2007)

[4] Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the
graph 500. Cray Users Group (CUG) (2010)

[5] Agarwal, V., Petrini, F., Pasetto, D., Bader, D.A.: Scalable graph
exploration on multicore processors. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. pp.1–11. IEEE Computer Society
(2010)

[6] Xia, Y., Prasanna, V.K.: Topologically adaptive parallel breadth-first
search on multicore processors. In: Proceedings of the 21st IASTED
International Conference. vol. 668, p. 91 (2009)

[7] Chhugani, J., Satish, N., Kim, C., Sewall, J., Dubey, P.: Fast and
efficient graph traversal algorithm for cpus: Maximizing single-node
efficiency. In: Parallel & Distributed Processing Symposium (IPDPS),
2012 IEEE 26th International. pp. 378–389. IEEE (2012)

[8] Beamer, S., Asanovic, K., Patterson, D.: Direction-optimizing breadth-
first search. Scientific Programming 21(3-4), 137–148 (2013)

[9] Luo, L., Wong, M., Hwu, W.m.: An effective gpu implementation of
breadth-first search. In: Proceedings of the 47th design automation
conference. pp. 52–55. ACM (2010)

[10] Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating cuda
graph algorithms at maximum warp. In: ACM SIGPLAN Notices. vol.
46, pp. 267–276. ACM (2011)

[11] Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph
exploration on multicore cpu and gpu. In: Parallel Architectures and
Compilation Techniques (PACT), 2011 International Conference on. pp.
78–88. IEEE (2011)

[12] Merrill, D., Garland, M., Grimshaw, A.: Scalable gpu graph traversal.
In: ACM SIGPLAN Notices. vol. 47, pp. 117–128. ACM (2012)

[13] Zou, D., Dou, Y., Wang, Q., Xu, J., Li, B.: Direction-optimizing
breadth-first search on cpu-gpu heterogeneous platforms. In: High
Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing
(HPCC EUC), 2013 IEEE 10th International Conference on. pp. 1064–
1069. IEEE (2013)

[14] Saule, E., Catalyurek, U.V.: An early evaluation of the scalability of
graph algorithms on the intel mic architecture. In: Parallel and
Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International. pp. 1629–1639. IEEE (2012)

[15] Gao, T., Lu, Y., Zhang, B., Suo, G.: Using the intel many integrated core
to accelerate graph traversal. International Journal of High Performance
Computing Applications 28(3), 255–266 (2014)

[16] Wang, Q., Jiang, W., Xia, Y., Prasanna, V.: A message-passing multi-
softcore architecture on fpga for breadth-first search. In: Field-
Programmable Technology (FPT), 2010 International Conference on. pp.
70–77. IEEE (2010)

[17] Betkaoui, B., Wang, Y., Thomas, D.B., Luk, W.: A reconfigurable
computing approach for efficient and scalable parallel graph exploration.
In: Application-Specific Systems, Architectures and Processors (ASAP),
2012 IEEE 23rd International Conference on. pp. 8–15. IEEE (2012)

[18] Ni, S., Dou, Y., Zou, D., Li, R., Wang, Q.: Parallel graph traversal for
fpga. IEICE Electronics Express 11(7), 20130987–20130987 (2014)

[19] Attia, O.G., Johnson, T., Townsend, K., Jones, P., Zambreno, J.:
Cygraph: A reconfigurable architecture for parallel breadth-first search.
In: Parallel & Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International. pp. 228–235. IEEE (2014)

AUTHORS PROFILE
Guoqing LEI is a PhD candidate in National Laboratory for Parallel and

Distributed Processing, School of Computer, National University of
Defense Technology, Changsha, 410073, China.

Rongchun LI is an assistant researcher in National Laboratory for Parallel and
Distributed Processing, School of Computer, National University of
Defense Technology, Changsha, 410073, China.

Song GUO is a PhD candidate in National Laboratory for Parallel and
Distributed Processing, School of Computer, National University of
Defense Technology, Changsha, 410073, China.

Fei XIA is an associative professor Electronic Engineering College, Naval
University of Engineering Wuhan, China

