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Abstract—Graphs are a fundamental data structure used 
extensively in numerous domains. In graph-based applications, 
Breadth-First Search (BFS) is a key component which suffers 
from long latency of memory accesses. In this paper, we present a 
novel message passing parallel BFS architecture namely 
TorusBFS on field-programmable gate array (FPGA). By 
utilizing the on-chip memories to store the visitation status of 
vertices and to implement the current/next queue, our 
architecture reduces the accesses to the off-chip memories. We 
also present a on-chip 2-D torus message passing structure to 
reduce latencies of exchanging information among processing 
elements (PEs). Limited to the inefficient random write accesses 
to the off-chip memories, the experimental results show that our 
architecture on a single FPGA achieves relative lower 
performance compared with related works based on Convey HC-
1/HC-2 platforms. Nevertheless, our TorusBFS is the first 
architecture that can be easily extended to multiple FPGAs in a 
distributed environment. 
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I.  INTRODUCTION 
Graphs are a fundamental data structure widely used in 

numerous domains such as social networking analysis [1], 
bioinformatics [2] and artificial intelligence. Many data-
intensive scientific problems can be solved through graph 
analysis. In the graph-based applications, Breadth First Search 
(BFS) is an important building block. Recently, BFS has 
attracted much more attentions as the kernel benchmark of the 
Graph500 rankings [4], which is used to measure the 
performance of supercomputers for the data-intensive 
applications.  

Efficient parallel processing of large graphs is considered 
challenging [3]. The performance of graph-based applications 
is severely limited by the random nature of memory access 
patterns, which is a fundamental property of graph processing 
algorithms. Although the compute and bandwidth resources in 
modern computer architectures have been increasing, graph 
processing still suffers from the ineffective utilization of 
compute and bandwidth resources [7]. 

Recently, the field-programmable gate array (FPGA) has 
become a promising high performance computing platform. 
Combining the flexibility of software and highly customized 
hardware design, FPGAs can offer superior performance for 

many specific applications. Previous studies demonstrated the 
potentials of implementing the graph traversal algorithm on 
FPGAs. These studies either target the commercial servers 
namely Convey HC-1/HC-2 with four Xilinx Virtex-5 
FPGAs[17][19] or in-house designed single Virtex-5 
FPGA[16][18]. Limited to the on-chip memory resources for 
Virtex-5 FPGAs, all these previous designs can not fully 
exploit the benefits of on-chip memories, which is significant 
for improving the performance for graph processing algorithms. 
In this paper, we introduce a novel message-passing 
architecture for parallel BFS on recent high-end Xilinx Virtex-
7 FPGAs (XC7VX485T), which has on-chip memories with 4× 
larger volume over that of Virtex-5. The main contributions for 
our approach are as follows: 

• We introduce a novel on-chip bitmap-based distributed 
queue implementation method which avoids the off-
chip memory accesses to decide whether the vertices 
are in the current level or not. 

• We introduce a novel 2-D torus message-passing 
structure to exchange information among processing 
elements (PEs). Compared with related work, our 
structure reduces the numbers of on-chip FIFOs used 
to exchange information significantly. 

• We have implemented the TorusBFS on Xilinx 
XC7VX485T FPGA, and compare the experimental 
results with related works based on the Convey HC- 
1/HC-2 platforms. 

• Our TorusBFS structure is highly scalable and can be 
easily mapped to multiple FPGAs. 

The remainder of this paper is organized as follows. We 
review the background and related works in section II. The 
proposed TorusBFS architecture is illustrated in section III. In 
Section IV, we extend the TorusBFS to multi-FPGA systems. 
The experimental results are presented in section V. Section VI 
concludes this paper. 

II. BACKGROUND AND RELATED WORKS 

A. Level-synchronous BFS algorithm 
Our implementation is based on the level-synchronous BFS 

algorithm, as the algorithm 1 shows. The input of algorithm is 
an undirected graph G(V, E) composed of a set of vertices V 
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and a set of edges E. Let the number of vertices and edges be n 
and m. Given a source vertex s∈V, the BFS algorithm explores 
the edges of G to produce a breadth-first search tree rooted at s. 
The output of BFS consists of two arrays: Level[1:n] and 
Father[1:n], where Level[v] and Father[v] denote the level and 
father of vertex v in the BFS tree respectively. The vertices to 
be explored in the current/next level are kept into two sets 
namely CQ and NQ. 

As the algorithm begins, Level[v] and Father[v] are set to 
be 0 and -1 for v∈V (lines 1-3). For the source vertex s, 
Level[s] and Father[s] are set to be 1 and s (lines 4-5). Initially, 
the set CQ only contains the source vertex and NQ is empty 
(lines 6-7). Let the variable level denotes the level value of 
vertices in CQ. For the CQ only containing source, the level 
value is 1 (line 7). The level-synchronous BFS algorithm is 
composed of L iterations, where L is the maximal level of the 
BFS tree rooted at s. In each iteration, for each vertex u∈CQ, 
the adjacency list of u will be traversed (line 12). If neighbor v 
has not been visited (Level[v] = 0) (line 13), then Level[s] and 
Father[s] will be set to be as level+1 and u (lines 14-15). At the 
same time, the vertex v will be added to the set NQ (line 16). 
After the adjacency list of all vertices of CQ have been 
traversed, the NQ and CQ will be swaped for the exploring in 
the next iteration (line 17). Finally, the BFS algorithm finishes 
when CQ is empty. 

 

B. Parallel BFS algorithm 
For the system with np processors, a natural way is to 

partition set of vertices V into np disjoint sets Vi, where each 
processor own |Vi|=|V|/np vertices. Each processor is 
responsible for exploring the vertices of its own. For the ith 
processor, the local sets namely CQi and NQi are also defined 

to keep the vertices in the current/next level. Each processor 
works similarly with the simple level-synchronous BFS 
algorithm. For each vertex u∈CQi of ith processor, each 
adjacent vertex v of u will be checked. For vertex v that has not 
been visited, we set the parent of v to be u. At the same time, v 
should also be added to NQi if v∈Vi. Otherwise, v will be sent 
to the NQj of jth processor if v∈Vj. For parallel BFS algorithm, 
all processors must synchronize after the processing of CQi in 
each level has been finished. 

C. Related works 
In order to improve the performance of graph processing 

especially BFS, many researches have been conducted for 
various computer architectures such as CPUs, GPUs (Graphics 
Processing Units), MIC (Many Integrated Core), and FPGAs. 

Agarwal et al.[5] proposes a scalable BFS implementation 
for advanced multicore processors such as Intel Nehalem EP 
and EX processors. Xia et al.[6] achieved high-quality results 
for BFS explorations on Intel and AMD processors. Chhugani 
et al.[7] reduces the access overhead of the visitation status of 
graph vertices by eliminating the atomic operations. Beamer et 
al.[8] designs a direction-optimizing BFS algorithm, which 
reduces the memory access by combing the top-down and 
bottom-up algorithms and obtains superior performance. 

For the GPU implementations, Luo et al.[9] present a GPU 
implementation of BFS that uses a hierarchical queue 
management technique. Hong et al.[10] present a novel virtual 
warp-centric programming method to address the problem of 
workload imbalance. They improve the performance by several 
factors upon previous GPU implementations. Hong et al.[11] 
also present a hybrid method which combines the CPU and 
GPU execution. Merrill et al.[12] present a BFS parallelization 
focusing on fine-grained task management constructed from 
efficient prefix sum. They achieve higher performance over 
previous works using single and quad-GPU configurations. 
Zou et al.[13] present a direction-optimizing implementation on 
CPU-GPU heterogeneous platforms. They obtain improvement 
over the highest pervious performance for shared memory 
systems. 

For the MIC-implementations, Saule et al. [14] evaluate 
scalability results of three variations of a breadth-first search 
algorithm using programming models such as OpenMP, Cilk 
Plus and Intels TBB. Gao et al. [15] discuss how to use MIC to 
accelerate the BFS algorithm and propose a heterogeneous 
hybrid BFS algorithm combining the top-down and bottom-up 
version. 

For the FPGA-implementations, Wang et al. [16] propose a 
message-passing multi-softcore architecture on FPGA for 
Breadth-First search. The vertices of the graph are divided into 
equal-sized disjoint sets owned by different softcores. In their 
work, the next queue is implemented by transferring the 
vertices in the next level to the corresponding cores using 
FIFOs. For a system with p cores, p2 FIFOs are needed for bi-
directional communication between each pair of cores, which 
limits the scaling of the algorithm. Betkaoui et al. [17] 
introduce a parallel graph exploration algorithm using the same 
division method as Wang et al.[16]. They do not implement the 
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current/next queue. The vertices in the current level are 
determined by repeatedly reading the distance of vertex which 
is compared with current level value. Ni et al.[18] present a 
multi-channel memory based architecture for parallel BFS 
algorithm. They use two DRAM modules and two SRAM 
chips to increase the bandwidth of the off-chip memory. Attia 
et al.[19] present an efficient reconfigurable architecture that 
adopts a custom graph representation and restructuring of the 
conventional BFS algorithm for parallel BFS. They store the 
current queue and next queue in the off-chip memory which are 
shared by all kernels. The current queue are split and read by 
interleaving method by different kernels. The writing to the 
next queue are solved by a token circulating through the 
kernels every clock cycle. 

III. PROPOSED ARCHITECTURE 
For efficiently processing parallel BFS algorithm on 

FPGAs, we must partition the tasks to multiple processing 
elements performing in parallel. In this paper, we divide the 
vertices into equal-sized disjoint sets assigned to multiple graph 
processing elements (PEs) to process in parallel. Each of PEs is 
responsible for exploring its assigned vertices. These vertices 
are also called local vertices for each PE. For those vertices 
belonging to the other PEs, a router is designed to send 
messages to the target PE. 

The architecture of our message-passing parallel BFS 
algorithm is illustrated as Figure 1. The master module is 
responsible for initializing the PEs and routers in the PE-router 
Torus 2-D Array, and synchronizing the searching process of 
each level. It also returns the finish signal to the host when the 
BFS algorithm is done. Let the number of PEs is np and the 
width of the Torus 2-D array is d which satisfies np=d2. Each 
of PEs is assigned a router R which is used to send and receive 
messages to and from other PEs respectively. The multi-ports 
memory access module is responsible for multiplexing the 
memory requests of PEs to the single DDR3 memory controller 
for improving the bandwidth utilization. Three DDR3 memory 
chips are available, two of which are used to store the graph 
data and the other one is used to store the output results. 

Figure 1.  Block diagram of our BFS architecture. 

A. PEs design 
Algorithm 2 presents the BFS kernel that runs on the PE. 

The PE consists of two main phases namely exploring and 

messaging that execute in parallel. A detailed description of 
each phase follows: 

1. Exploring the vertices of current level. In this phase, 
the values in the Bitmap_CQ for each local vertex i are read to 
judge whether i is in the current level. If Bitmap_CQ[i]=1, the 
global vertex id u is generated by combining the pe_id and 
local id i together. Then the R array of the global vertex u is 
read to get the start and end positions of adjacency list. In order 
to deal with vertex with large number of neighbors, q neighbors 
are loaded from off-chip memory and processed each time. For 
each neighbor v of the vertex u, if v belongs to this PE and v 
has not been visited, then a process called 
Process_unvisited_vertex(v) is performed on vertex v which 
includes four operations: 1) Add the vertex v to the next queue 
by setting Bitmap_NQ[v]=1; 2) Set the bitmap[v]=1 to indicate 
that the vertex v has been visited; 3) Set the Level[v] to be 
level+1; 4) Set the Father[v]=u. Otherwise, if v belongs to 
other PEs, then the message (u, v) is sent to the router and then 
forwarded to the owner PE of vertex v. After each local vertex i 
has finished processing, the value Bitmap_CQ[i] will be set to 
0. The swap between CQ and NQ is implemented by 
alternating reading/writing between Bitmap_CQ and 
Bitmap_NQ depending on the level value. 

 
2. Processing the messages from other PEs. In this stage, 

the fifo m_fifo is read if there are messages sent to this PE. For 
each message (u, v), the local bitmap Bitmap[v] is read to 
determine whether the vertex v has been visited. If the vertex v 
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has not been visited, the process Process_unvisited_vertex(v) is 
then preformed on vertex v. 

Figure 2.  Block diagram of Router design. 

B. Router design 
The router module is responsible for receiving messages 

from five incoming directions including up, down, left, right 
and local PE and sending these messages to five outgoing 
directions that are opposite from the incoming. Figure 2 shows 
the structure of the router design. There are five FIFOs caching 
the messages from the five incoming directions. The module 
Scheduler repeatedly reads messages from the incoming FIFOs 
and decide the forwarding. The positions of both router and the 
PE can be denoted using their row indices and column indices 
in the 2-D Torus array. In this way, when the route r in the 
position (ri, rj) needs to process a message forwarding to the 
target PE t in the position (ti, tj), the forwarding direction can be 
generated by the rules as the table I shows. The rules work in 
two steps. Firstly, ri and ti are compared. The message will be 
sent to the router in the up direction if ti < ri, otherwise the 
down direction will be chosen. Secondly, if ri equals ti, rj and tj 
are then compared to choose the forwarding direction from the 
left three directions: left, right or local. 

TABLE I.  FORWARDING RULES OF ROUTERS 

Forwarding direction  Rules 
up ti < ri 

down ti > ri 
left ti = ri∧tj < rj 

right ti = ri ∧tj > rj 
local ti = ri ∧tj = rj 

A conflict occurs when more than one message are sent to 
the same output port at the same time. To solve this problem, 
five counters are used to record the number of messages for 
each incoming FIFO. The message from the FIFO with the 
highest counter will be sent to the output port when conflict 
occurs. After the message has been forwarded, the next 
message from that FIFO will be read as soon as possible. In our 
design, the total number of FIFOs for the routers to exchange 
information among np PEs is 5×np, significantly lower than 
(np)2 of Wang et al.[16]. 

IV. BFS ON MULTI-FPGA SYSTEM 
Our TorusBFS can be easily extended to multi-FPGA 

systems. The techniques presented in this section can be 
applied to both multiple FPGAs on one host processor and 
mutiple FPGAs distributed on mutiple host processors. The 
multi-FPGA system with mutiple FPGAs on one single host 
processor is considered in this paper. When mutiple host 
processors are employed, the communication between FPGAs 
can be replaced by communication between processors. 

We assume that TorusBFS is performed on a 2 × 2 2D grid 
of FPGAs as shown in Figure 3. For each FPGA, graph data 
and BFS results are stored in its local DRAMs. Each FPGA can 
communicate with its neighbors. 

Figure 3.  Multi-FPGA system for TorusBFS. 

For a single FPGA, one 2D Torus array of PE-routers is 
employed to execute exploring of vertices in the same level at a 
time. Each partition of vertices is executed on the PE in parallel. 
For a multi-FPGA system with each FPGA containing one 2D 
Torus arrya of PE-routes, the vertices of graph will be divided 
into partitions equally distributed on mutiple FPGAs. The 
partition of vertices on each FPGA are processed as the single 
FPGA system. The fathers and levels of vertices in each 
partition are stored in one of local DRAMs of each FPGA. 
Inter-FPGA communication is required to exchange messages 
between FPGAs. In practice, inter-FPGA communication can 
be implemented by only connecting the data transfer controllers 
of the 2D Torus array of PE-routers in neighoring FPGAs. 

One typical advantage of multi-FPGA system over the 
single-FPGA is the linear increasing of off-chip DRAM 
bandwidth. For the data-intensive application such as BFS, the 
performance of our TorusBFS scales linearly theoretically with 
the number of FPGAs in a distributed computing environment. 
This is because: 1) the bottleneck of our TorusBFS is the 
latency of off-chip memory accesses; 2) the latency of message 
passing between FPGAs can be ignored by directly connecting 
the data transfer controllers between neighboring FPGAs. 

V. EXPERIMENTAL RESULTS 
We test our TorusBFS architecture on the self-designed 

FPGA prototyping system. The system is a high performance 
computing embedded platform that consists a zynq processor 
and a coprocessor of one programmable Virtex-7 XC7VX485T 
FPGA. For the off-chip memories, three DDR3 chips each of 
which has 8GB volume are connected to the FPGA. There are 
also three on-chip memory controller generated with Xilinx 
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MIG 7 Series tools to provide access to the corresponding off-
chip DDR3 chips. The memory controller works at frequency 
166MHz and allows accesses to DDR3 memory at peak 
bandwidth of 10.6 GB/s. We have implemented 16 PEs and 16 
routers in our design. The size of bitmap in each PE is 256K 
bits, which means that the maximal scale that our TorusBFS 
can process is 22. We have test the performance of TorusBFS 
on only one Virtex-7 FPGA recently, the performance results 
for four FPGAs are estimated according to the linear scalability 
characteristics of TorusBFS on multi-FPGA systems. 

We use scale-free graphs to test the performance of our 
TorusBFS. The scale-free graphs are generated using the 
Graph500 benchmark suit based on the Recursive-Matrix (R-
MAT) graph model. The parameters of the R-MAT graph are 
set as the default values of the Graph500 benchmark (A=0.57, 
B=0.19, C=0.19 ). The performance is measured by taking the 
average execution time of 64 BFS runs from 64 different 
source vertices which are randomly chosen. The performance is 
reported as the throughput in billions of traversed edges per 
second (GTEPs). 

 

Figure 4.  BFS performance against related works for RMAT graphs. 

A. Performance analysis 
Figure 4 demonstrate how our TorusBFS performs against 

the BFS implementations from Betkaoui et al.[17] and Attia et 
al.[19]. Both of these two implementations target the same 
platform, the Convey HC-1/HC-2, which consists of a 
coprocessor board of four programmable Virtex5-LX330 
FPGAs. The comparison shows throughput with number of 
vertices that spans from 220 to 222 and average vertex degree 
that spans from 8 to 64. 

For the average degree of 8, the TorusBFS on one FPGA 
performs as well as that of Betkaoui et al.[17] for scale 20 and 
21. For the average degrees of 8 and 16, our TorusBFS on four 
FPGAs performs better than that of Betkaoui et al.[17] for all 
scale ranges. While for the larger degrees of 32 and 64, our 
TorusBFS on both one and four FPGAs performs worse than 

that of both Betkaoui et al.[17] and Attia et al.[19]. It can be 
inferred that the workload imbalance and latency of off-chip 
memory access limit the higher processing rate of TorusBFS. 

Figure 5 shows as the average vertex degree grows from 8 
to 64, how the performance of our TorusBFS scales on single 
FPGA. The performance for average vertex degrees of 16, 32 
and 64 is similar and larger than that of 8. It can be inferred that 
larger vertex degrees introduce more memory accesses and 
improve the bandwidth utilization ratio. 

 

Figure 5.  Performance scaling with respect to average vertex degree for 
RMAT graphs of scale 20, 21 and 22. 

B. Resource utilization 
Table II shows the device resource utilization compared 

with related implementations. Our TorusBFS architecutre 
consumes about 91% of block ram memories, most of which 
are used for storing the visitation status of vertices and 
implementing current/next queue. However, it should be noted 
that about 10% of the FPGAs’ logical and 15% of the block 
rams are occupied for the required interfaces (e.g. Memory 
controller interface, and memory requests multiplexing). 

TABLE II.  RESOURCE UTILIZATION 

 Slice LUTs BRAMs Slice LUT-FF 

Betkaui ea al.[17] 80% 64% n/a 

Attia et al.[19] 55% 55% 74% 

Our TorusBFS 66% 91% 21% 

VI. CONCLUSION 
In this paper, we have proposed a novel FPGA-based 

message-passing parallel BFS architecture, namely TorusBFS. 
Compared with other implementations based on Convey HC-
1/HC-2 platforms, our implementation shows relative lower 
performance, which resulted from the lower off-chip memory 
bandwidth utilization. One limitation of our TorusBFS is 
higher consumption of on-chip block rams. The graph scale 
over 22 can not be processed in a single FPGA chip. In order to 
perform BFS for larger graphs scale (e.g. 23 ), more advanced 
FPGA chips may be needed. Nevertheless, our TorusBFS can 
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easily be mapped to mutiple FPGA chips to process larger 
graphs, the performance scales linearly with the number of 
FPGAs theoretically. We will test the performance of 
TorusBFS on multi-FPGA system in future. 
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